55 research outputs found

    Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance

    Full text link
    We investigate the properties of kappa-Minkowski spacetime by using representations of the corresponding deformed algebra in terms of undeformed Heisenberg-Weyl algebra. The deformed algebra consists of kappa-Poincare algebra extended with the generators of the deformed Weyl algebra. The part of deformed algebra, generated by rotation, boost and momentum generators, is described by the Hopf algebra structure. The approach used in our considerations is completely Lorentz covariant. We further use an adventages of this approach to consistently construct a star product which has a property that under integration sign it can be replaced by a standard pointwise multiplication, a property that was since known to hold for Moyal, but not also for kappa-Minkowski spacetime. This star product also has generalized trace and cyclic properties and the construction alone is accomplished by considering a classical Dirac operator representation of deformed algebra and by requiring it to be hermitian. We find that the obtained star product is not translationally invariant, leading to a conclusion that the classical Dirac operator representation is the one where translation invariance cannot simultaneously be implemented along with hermiticity. However, due to the integral property satisfied by the star product, noncommutative free scalar field theory does not have a problem with translation symmetry breaking and can be shown to reduce to an ordinary free scalar field theory without nonlocal features and tachionic modes and basicaly of the very same form. The issue of Lorentz invariance of the theory is also discussed.Comment: 22 pages, no figures, revtex4, in new version comments regarding translation invariance and few references are added, accepted for publication in Int. J. Mod. Phys.

    Tensor Coordinates in Noncommutative Mechanics

    Full text link
    A consistent classical mechanics formulation is presented in such a way that, under quantization, it gives a noncommutative quantum theory with interesting new features. The Dirac formalism for constrained Hamiltonian systems is strongly used, and the object of noncommutativity θij{\mathbf \theta}^{ij} plays a fundamental rule as an independent quantity. The presented classical theory, as its quantum counterpart, is naturally invariant under the rotation group SO(D)SO(D).Comment: 12 pages, Late

    Kappa-deformed Snyder spacetime

    Full text link
    We present Lie-algebraic deformations of Minkowski space with undeformed Poincare algebra. These deformations interpolate between Snyder and kappa-Minkowski space. We find realizations of noncommutative coordinates in terms of commutative coordinates and derivatives. Deformed Leibniz rule, the coproduct structure and star product are found. Special cases, particularly Snyder and kappa-Minkowski in Maggiore-type realizations are discussed. Our construction leads to a new class of deformed special relativity theories.Comment: 12 pages, no figures, LaTeX2e class file, accepted for publication in Modern Physics Letters

    KMS states on Quantum Grammars

    Get PDF
    We consider quantum (unitary) continuous time evolution of spins on a lattice together with quantum evolution of the lattice itself. In physics such evolution was discussed in connection with quantum gravity. It is also related to what is called quantum circuits, one of the incarnations of a quantum computer. We consider simpler models for which one can obtain exact mathematical results. We prove existence of the dynamics in both Schroedinger and Heisenberg pictures, construct KMS states on appropriate C*-algebras. We show (for high temperatures) that for each system where the lattice undergoes quantum evolution, there is a natural scaling leading to a quantum spin system on a fixed lattice, defined by a renormalized Hamiltonian.Comment: 22 page

    Noncommutative Complex Scalar Field and Casimir Effect

    Full text link
    A noncommutative complex scalar field, satisfying the deformed canonical commutation relations proposed by Carmona et al. [27]-[31], is constructed. Using these noncommutative deformed canonical commutation relations, a model describing the dynamics of the noncommutative complex scalar field is proposed. The noncommutative field equations are solved, and the vacuum energy is calculated to the second order in the parameter of noncommutativity. As an application to this model, the Casimir effect, due to the zero point fluctuations of the noncommutative complex scalar field, is considered. It turns out that in spite of its smallness, the noncommutativity gives rise to a repulsive force at the microscopic level, leading to a modifed Casimr potential with a minimum at the point amin= racine(5/84){\pi}{\theta}.Comment: Revtex style, 28 page

    Kappa Snyder deformations of Minkowski spacetime, realizations and Hopf algebra

    Full text link
    We present Lie-algebraic deformations of Minkowski space with undeformed Poincar\'{e} algebra. These deformations interpolate between Snyder and κ\kappa-Minkowski space. We find realizations of noncommutative coordinates in terms of commutative coordinates and derivatives. By introducing modules, it is shown that although deformed and undeformed structures are not isomorphic at the level of vector spaces, they are however isomorphic at the level of Hopf algebraic action on corresponding modules. Invariants and tensors with respect to Lorentz algebra are discussed. A general mapping from κ\kappa-deformed Snyder to Snyder space is constructed. Deformed Leibniz rule, the Hopf structure and star product are found. Special cases, particularly Snyder and κ\kappa-Minkowski in Maggiore-type realizations are discussed. The same generalized Hopf algebraic structures are as well considered in the case of an arbitrary allowable kind of realisation and results are given perturbatively up to second order in deformation parameters.Comment: 38 pages, LaTeX2e class fil

    Formulation, Interpretation and Application of non-Commutative Quantum Mechanics

    Full text link
    In analogy with conventional quantum mechanics, non-commutative quantum mechanics is formulated as a quantum system on the Hilbert space of Hilbert-Schmidt operators acting on non-commutative configuration space. It is argued that the standard quantum mechanical interpretation based on Positive Operator Valued Measures, provides a sufficient framework for the consistent interpretation of this quantum system. The implications of this formalism for rotational and time reversal symmetry are discussed. The formalism is applied to the free particle and harmonic oscillator in two dimensions and the physical signatures of non commutativity are identified.Comment: 11 page
    • …
    corecore